No, practice does not make perfect

Members of the National Youth Orchestra practise at Rustenberg Junior School in Rondebosch, Cape Town, in 2005. Not everyone needs 10 000 hours of practice to be great at something. Picture: Leon Muller

Members of the National Youth Orchestra practise at Rustenberg Junior School in Rondebosch, Cape Town, in 2005. Not everyone needs 10 000 hours of practice to be great at something. Picture: Leon Muller

Published Feb 2, 2015

Share

Washington – A decade ago Magnus Carlsen, who at the time was only 13, created a sensation in the chess world when he defeated former world champion Anatoly Karpov at a chess tournament in Reykjavik, Iceland, and the next day played then-top-rated Garry Kasparov – who is widely regarded as the best chess player of all time – to a draw.

Carlsen’s subsequent rise to chess stardom was meteoric: grandmaster status later in 2004; a share of first place in the Norwegian Chess Championship in 2006; youngest player ever to reach World No 1 in 2010; and highest-rated player in history in 2012.

What explains this sort of spectacular success? What makes someone rise to the top in music, games, sports, business, or science? This question is the subject of one of psychology’s oldest debates.

In the late 1800s, Francis Galton – founder of the scientific study of intelligence and a cousin of Charles Darwin – analysed the records of hundreds of scholars, artists, musicians and other professionals and found that greatness tended to run in families.

For example, he counted more than 20 eminent musicians in the Bach family. (Johann Sebastian was just the most famous.)

Galton concluded that experts were “born”.

Nearly half a century later, the behaviourist John Watson countered that experts were “made” when he famously guaranteed that he could take any infant at random and “train him to become any type of specialist (he) might select – doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and thief, regardless of his talents”.

The experts-are-made view has dominated the discussion in recent decades.

In a pivotal 1993 article published in Psychological Review – psychology’s most prestigious journal – the Swedish psychologist K Anders Ericsson and his colleagues proposed that performance differences across people in domains such as music and chess largely reflect differences in the amount of time people have spent engaging in “deliberate practice”, or training exercises specifically designed to improve performance.

To test this idea, Ericsson and colleagues recruited violinists from an elite Berlin music academy and asked them to estimate the amount of time per week they had devoted to deliberate practice for each year of their musical careers.

The major finding of the study was that the most accomplished musicians had accumulated the most hours of practice. For example, the average for elite violinists was about 10 000 hours, compared with only about 5 000 hours for the least accomplished group.

In a second study, the difference for pianists was even greater – an average of more than 10 000 hours for experts compared with only about 2 000 hours for amateurs.

Based on these findings, Ericsson and colleagues argued that prolonged effort, not innate talent, explained differences between experts and novices.

These findings filtered their way into pop culture. They were the inspiration for what Malcolm Gladwell termed the “10 000 Hour Rule” in his book Outliers, which in turn was the inspiration for the song Ten Thousand Hours by the hip-hop duo Macklemore and Ryan Lewis, the opening track on their Grammy-award winning album The Heist.

However, recent research has demonstrated that deliberate practice, while undeniably important, is only one piece of the expertise puzzle – and not necessarily the biggest piece.

In the first study to convincingly make this point, the cognitive psychologists Fernand Gobet and Guillermo Campitelli found that chess players differed greatly in the amount of deliberate practice they needed to reach a given skill level in chess. For example, the number of hours of deliberate practice to first reach “master” status (a very high level of skill) ranged from 728 hours to 16 120 hours. This means that one player needed 22 times more deliberate practice than another player to become a master.

A recent meta-analysis by Case Western Reserve University psychologist Brooke Macnamara and her colleagues came to the same conclusion. They searched through more than 9 000 potentially relevant publications and identified 88 studies that collected measures of activities interpretable as deliberate practice and reported their relationships to corresponding measures of skill.

With very few exceptions, deliberate practice correlated positively with skill. In other words, people who reported practising a lot tended to perform better than those who reported practising less.

But the correlations were far from perfect: Deliberate practice left more of the variation in skill unexplained than it explained.

For example, deliberate practice explained 26 percent of the variation for games such as chess, 21 percent for music, and 18 percent for sports. So, deliberate practice did not explain all, nearly all, or even most of the performance variation in these fields. In concrete terms, what this evidence means is that racking up a lot of deliberate practice is no guarantee that you’ll become an expert. Other factors matter.

What are these other factors? There are undoubtedly many. One may be the age at which a person starts an activity.

In their study, Gobet and Campitelli found that chess players who started playing early reached higher levels of skill as adults than players who started later, even after taking into account the fact that the early starters had accumulated more deliberate practice than the later starters. There may be a critical window during childhood for acquiring certain skills, just as there seems to be for language.

There is now compelling evidence that genes matter for success, too. In a study led by the King’s College London psychologist Robert Plomin, more than 15 000 twins in the UK were recruited to perform a battery of tests and questionnaires, including a test of drawing ability in which the children were asked to sketch a person.

Researchers found that there was a stronger correspondence in drawing ability for the identical twins than for the fraternal twins. In other words, if one identical twin was good at drawing, it was quite likely that his or her identical sibling was, too.

Because identical twins share 100 percent of their genes, whereas fraternal twins share only 50 percent on average, this finding indicates that differences across people in basic artistic ability are in part due to genes.

In another study, a team of researchers at the Karolinska Institute in Sweden led by psychologist Miriam Mosing had more than 10 000 twins estimate the amount of time they had devoted to music practice and complete tests of basic music abilities, such as determining whether two melodies carry the same rhythm.

The surprising discovery of this study was that although the music abilities were influenced by genes – to the tune of about 38 percent, on average – there was no evidence they were influenced by practice.

For a pair of identical twins, the twin who practised music more did not do better on the tests than the twin who practised less.

This finding does not imply that there is no point in practising if you want to become a musician. The sort of abilities captured by the tests used in this study aren’t the only things necessary for playing music at a high level; things such as being able to read music, play a keyboard, and commit music to memory also matter, and they require practice.

But it does imply that there are limits on the transformative power of practice. As Mosing and her colleagues concluded, practice does not make perfect.

Along the same lines, biologist Michael Lombardo and psychologist Robert Deaner examined the biographies of male and female Olympic sprinters such as Jesse Owens, Marion Jones and Usain Bolt, and found that, in all cases, they were exceptional compared with their competitors from the very start of their sprinting careers – before they had accumulated much more practice than their peers.

What all of this evidence indicates is that we are not created equal where our abilities are concerned. This conclusion might make you uncomfortable, and understandably so.

Throughout history, so much wrong has been done in the name of false beliefs about genetic inequality between different groups of people – males vs females, blacks vs whites, and so on.

War, slavery, and genocide are the most horrifying examples of the dangers of such beliefs, and there are countless others.

The idea that we are created equal has been the central tenet of the “modern” worldview – the belief that anyone can become anything they want with enough determination.

It is therefore crucial to differentiate between the influence of genes on differences in abilities across individuals and the influence of genes on differences across groups.

The former has been established beyond any reasonable doubt by decades of research. The latter has never been established, and any claim to the contrary is simply false.

Wouldn’t it be better to just act as if we are equal, evidence to the contrary notwithstanding? That way, no people would be discouraged from chasing their dreams – competing in the Olympics or winning a Nobel Prize. The answer is no, for two reasons.

The first is that failure is costly, both to society and to individuals. Pretending that all people are equal in their abilities will not change the fact that a person with an average IQ is unlikely to become a theoretical physicist, or the fact that a person with a low level of music ability is unlikely to become a concert pianist.

It makes more sense to pay attention to people’s abilities and their likelihood of achieving certain goals, so people can make good decisions about the goals they want to spend their time, money and energy pursuing.

Moreover, genes influence not only our abilities, but the environments we create for ourselves and the activities we prefer – a phenomenon known as gene-environment correlation. For example, yet another recent twin study (and the Karolinska Institute study) found that there was a genetic influence on practising music. Pushing someone into a career for which he or she is genetically unsuited will probably not work.

The second reason we should not pretend we are endowed with the same abilities is that doing so perpetuates the myth that is at the root of much inaction in society – the myth that people can help themselves to the same degree if they just try hard enough.

You’re not a heart surgeon? That’s your fault for not working hard enough in school! You didn’t make it as a concert pianist? You must not have wanted it that badly.

Societal inequality is thus justified on the grounds that anyone who is willing to put in the requisite time and effort can succeed and should be rewarded with a good life, whereas those who struggle to make ends meet are to blame for their situations and should pull themselves up by their own bootstraps.

If we acknowledge that people differ in what they have to contribute, then we have an argument for a society in which all human beings are entitled to a life that includes access to decent housing, health care and education, simply because they are human.

Our abilities might not be identical, and our needs surely differ, but our basic human rights are universal.

Slate/The Washington Post News Service

Related Topics: